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MCD12	  Products	  
MCD12Q1	  –	  Global	  Land	  Cover	  Type	   MCD12Q2	  –	  Global	  Land	  Cover	  Dynamics	  

North	  American	  land	  cover	  from	  MODIS	  
(MODIS	  Land	  Cover	  mage	  courtesy	  Na.onal	  Geographic)	  

North	  American	  growing	  season	  length	  
(Ganguly	  et	  al.,	  RSE,	  2010)	   2	  



MCD12Q1	  -‐	  Refinements	  
Training	  site	  database	  for	  supervised	  classifica.on	  completely	  revised,	  augmented	  
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MCD12Q1	  -‐	  Refinements	  
New	  LCCS	  Compliant	  Land	  Cover	  Layer	  

IGBP	  Legend	  
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Preliminary	  C6	  LCCS	  Product	  	  
North	  America	  
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Majority	  class	  from	  11	  
years	  of	  MCD12Q1	  

Number	  of	  different	  
class	  labels	  at	  each	  
500	  m	  pixel	  
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MCD12Q1	  Refinements:	  Land	  Cover	  Change	  

What	  is	  nature,	  magnitude	  of	  detectable	  change?	  



Signatures	  of	  LC	  Change	  in	  MODIS	  
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Land	  Cover	  Conversion:	  
•  Pre-‐processing	  &	  feature	  extracKon	  
•  StaKsKcal	  metrics	  of	  change	  that	  

exploit	  both	  spaKal	  and	  temporal	  
informaKon	  

Huang	  et	  al.,	  in	  prep	  
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Signatures	  of	  LC	  Change	  in	  MODIS	  

Disturbance	  
•  How	  does	  area	  of	  land	  cover	  

change	  affect	  detecKon	  of	  change?	  
•  How	  does	  land	  cover	  history	  

(disturbance)	  affect	  detecKon	  of	  
change?	  

•  How	  does	  noise	  in	  data	  affect	  
detecKon	  of	  change?	  

Sulla-‐Menashe	  et	  al,	  in	  revision	  RSE	  
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MCD12Q1	  Summary	  

•  Improved	  training	  site	  database	  
– Provides	  improved	  basis	  for	  mapping	  

•  New	  LCCS-‐based	  classificaKon	  
– BeVer	  framework	  for	  LC	  mapping	  

•  Land	  cover	  Kme	  series	  
– Explicit	  incorporaKon	  of	  change	  
– Explicit	  definiKon	  of	  nature,	  magnitude	  of	  changes	  
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MCD12Q2	  -‐	  Refinements	  

Bias	  reduc.on	  for	  
asymmetric	  

phenology	  using	  
generalized	  logis.c	  

func.on.	  	  
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MCD12Q2	  -‐	  Refinements	  
Smoothing	  &	  gap	  filling	  (snow,	  noise,	  missing	  data)	  via	  local	  regression	  
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MCD12Q2	  -‐	  Assessment	  

absolute error (MAE) between the ExGw and each of the MODIS VI
based phenological metrics (Table 4). In general the MAE for metrics
derived from EVI and MODIS phenology data are larger than those
derived from NDVI and ExGM data. Further, both the Dolly
Sods and Smoky Look sites have slightly larger MAE values than
the Bartlett Forest and Mammoth Cave sites. Given the rapid in-
crease (spring) and decrease (autumn) in the ExGW time series for
both Smoky Look and Dolly Sods, this is expected because the 8-
day temporal sampling of MODIS is not able to capture these rapid
transitions. In contrast, dynamics in phenology at Mammoth Cave
and Bartlett Forest data are more gradual, which leads to better
fits, better correspondence between the different VI time series

and the derived phenological indicators, and by extension, lower
the MAE for both sites. (Table 4). It is interesting to note that MAE
values at the Mammoth Cave site show relatively consistent patterns
across metrics, the only exception being Gdec, which was influenced
by missing data and/or outliers in 2009. When data from 2009 are
excluded, MAE values are 4–9 and 6–16 for the NDVI and ExGM

based metrics (Table 4).

3.2. Interannual covariance among phenological indicators

Visual assessment of year-to-year covariation among phenolog-
ical metrics suggests that VI data derived from MODIS and the
cameras capture consistent patterns of interannual variation, presum-
ably attributable to climate forcing (Fig. 5). For example, at the Mam-
moth Cave site, which has the longest time series of camera data,
covariance among phenological indicators is visible in Fig. 5. In addi-
tion, the effects of early spring warming and a late frost event in
2007 are clearly evident (i.e., early onset of leaf growth, but delayed
canopy maturity), and are consistent with previous work that docu-
mented pronounced vegetation response to unusual spring weather
conditions in the central and eastern United States in 2007 (Gu et al.,
2008).

More specifically, Spearman rank correlations among the various
metrics (Table 5) vary significantly across sites. Smoky Look and
Mammoth Cave are the only sites with large proportion of significant
correlations between ExGW and the MODIS VI based metrics; specifi-
cally, metrics derived from ExGW were significantly correlated with
the timing of increase across all MODIS phenology metrics (signifi-
cant correlations ranging from ρ=0.59 to 0.78, pb0.05). Among the
metrics derived from MODIS, those based on EVI for the timing of
greenness maximum showed high positive and significant correla-
tions with the webcam data for all but the Mammoth Cave site
(ρ=0.9, 0.85 and 0.79, pb0.05 for Bartlett Forest, Smoky Look and
Dolly Sods respectively). The timing of VI decrease for the Mammoth
Cave site exhibited low to negative correlations with estimates based
on ExGW andMODIS VI data, suggesting especially high uncertainty in
the estimated dates of this phenological metric. This result is consis-
tent with the MAE values presented above. Because phenological
metrics for both greenup and senescence values are derived from
greenness increase and maximum or greenness decrease and mini-
mum, respectively, negative correlation among phenological metrics
will negatively influence test statistics. A consistent significant corre-
lation is seen for greenness increase and minimum on the Smoky
Look site; otherwise, the Dolly Sods site shows low covariance be-
tween estimated phenological indicators greenness decrease and
minimum.

3.3. Dynamics in greenup and senescence

Comparison of phenological dynamics captured by the different
VIs reveal that each VI and data source provides slightly different in-
formation related to canopy dynamics during leaf development and
senescence. Fig. 3 illustrates different responses within and between
sites, with rapid changes in both greenup and senescence captured
by the ExGW data at both Smoky Look and Dolly Sods, and more grad-
ual changes at Mammoth Cave and Bartlett Forest. Temporal dynam-
ics measured by the satellite data are more gradual. At all four sites
MODIS EVI time series show evidence of asymmetry between and
within spring and autumn periods. At the Bartlett Forest and Dolly
Sods sites, spring canopy dynamics are relatively symmetric, with
transitions located around the ~50th percentile and relatively low
BR values of 0.55 and 0.11, respectively (Table 6). Also note the
rapid development of the canopy at Bartlett Forest in 2010 due to ex-
ceptionally warm spring temperatures (Hufkens et al., 2011). Autumn
dynamics are less symmetric and are positively biased, with BR values
of 0.91, 1 and 0.83 at the Mammoth Cave, Dolly Sods and Smoky Look

Fig. 5. a–d. Phenological indicators for the Mammoth Cave National Park (Mc) site cov-
ering the complete data series (2002–2009). Greenness increase (a), maximum (b), de-
crease (c) and minimum (d) for the ExGW (red line, dot), MODIS EVI (black short
dashed line, square), MODIS NDVI (green dotted line, star) and MODIS ExGM (blue dot-
ted dashed line, cross) are shown. All values were estimated using a logistic model es-
timated by non-linear least squares. For visual comparison values from theMODIS Land
Cover Dynamics product (MCD12Q2) are also shown (orange long dashed line,
triangle).

315K. Hufkens et al. / Remote Sensing of Environment 117 (2012) 307–321
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Comparison	  with	  Webcam	  data	  
•  Gcc	  Kme	  series	  from	  “Phenocams”	  
•  Using	  idenKcal	  curvature	  change	  

point	  methods	  to	  idenKfy	  
transiKons	  

•  Across	  sites	  and	  across	  years	   Hu^ens	  et	  al,	  RSE,	  2012	  

Klosterman	  et	  al,	  in	  prep	  
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Start	  of	  Spring	  from	  MODIS	  vs	  Landsat	  
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MCD12Q2	  -‐	  Assessment	  
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MCD12Q2	  –	  New	  Science	  Results	  

Carbon	  cost	  associated	  with	  early	  spring	  and	  late	  spring	  frosts	  
based	  on	  MODIS	  and	  flux	  data	  (Hu^ens	  et	  al.,	  GCB,	  2012)	  
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MCD12Q2	  –	  New	  Science	  Results	  
48 E.K. Melaas et al. / Agricultural and Forest Meteorology 171– 172 (2013) 46– 56

Fig. 1. Example showing how spring phenology metrics were derived from CO2 time
series; flux data are indicated with black dots, and smoothing spline by solid red line;
relative GEPratio and LAI threshold dates are indicated with vertical bars; minimum
and  maximum of smoothed GEP are indicated with horizontal bars. Data are from
2004 for the FLUXNET site DE-Hai, located in Hainich, Germany. (For interpretation
of  the references to color in this figure legend, the reader is referred to the web
version of the article.)

2.2. Spring phenology models

Most models that are used to simulate phenology in temperate
and boreal ecosystems assume that leaf development is primarily
regulated by air temperature and can be modeled using cumu-
lative thermal units (heating or chilling degree days) above or
below a prescribed reference heating or chilling temperature: Tf
or Tc, respectively (Hänninen and Kramer, 2007). The simplest
models only consider heating temperatures accumulated after a
fixed date (e.g., January 1), and are designed to predict the date
of specific phenophases such as budburst (e.g., the Spring Warm-
ing model; Hunter and Lechowicz, 1992). More complex models
also consider the effect of chilling temperatures, which some stud-
ies have suggested control spring phenology in combination with
cumulative heating. This family of models includes the Parallel
model (Landsberg, 1974; Hänninen, 1990), the Sequential model
(Hänninen, 1990; Cesaraccio et al., 2004), and the Alternating
model (Murray et al., 1989).

In this paper we test 11 different models that use thermal heat-
ing or combined thermal chilling and heating to predict the timing
of spring onset of photosynthetic activity. Each model is based on
one of three functional forms in which spring onset is predicted
to occur when the state of forcing (Sf(t)) reaches a critical sum of
heating units (F*).

In the “Spring Warming 1” model (SW1), the rate of accumulated
heating is linearly related to air temperature:

Sf (t) =
tpheno∑

p0

max(Tair − Tf , 0) (1)

where Tair is daily mean air temperature, p0 is the starting photope-
riod when heating is prescribed to begin accumulating, and tpheno
is the date of spring onset when Sf (t) ≥ F∗. In the “Spring Warming
2” model (SW2), accumulated heating is related to air temperature
using a logistic function (Sarvas, 1974):

Sf (t) =
tpheno∑

p0

max
[ 28.4

1 + exp(−0.185(Tair − 18.4))
, 0
]

(2)

Finally, the Sequential model (SEQ1) assumes that heating accu-
mulation (using Eq. (1))  does not occur until a critical sum of chilling
units (C*) is reached, and where the state of chilling (Sc(t)) increases
only after the daily mean air temperature falls below a prescribed
temperature threshold:

Sc(t) =
t1∑

p0

(
1 Tair < Tc

0 Tair ≥ Tc

)
(3)

where t1 is the date when chilling requirements are met  and heat-
ing accumulation begins.

Variants of these three basic model forms have been widely
used to predict leaf phenology and detailed descriptions for
each approach are presented elsewhere (e.g., Chuine et al., 1999;
Richardson and O’Keefe, 2009). Here we test 11 different models
based on these basic model forms using implementations that are
slightly different from previous efforts (Table 1). Specifically, previ-
ous efforts initiate accumulation of chilling or heating requirements
based on a prescribed date (t0). In the models we test here, accu-
mulation is instead initiated based on a photoperiod trigger (p0).
This is functionally equivalent to allowing t0 to vary with latitude.
For the spring warming models (SW1 and SW2), if the minimum
photoperiod at a given site is always greater than p0, accumulation
is prescribed to begin on December 21. Similarly, for the chilling
models (i.e., SEQ1), if minimum p0 is never reached, we  prescribe
accumulation to begin on September 21. These dates were selected
because December 21 has the shortest day length in the Northern

Table 1
Growing degree-day models and their associated parameters.

Model Parametersa

Thermal base temperature Chilling base temperature Required thermal forcing Required chilling forcing Minimum photoperiod

SW1.1 Tf F* p0

SW1.2 Tf = ax + b F* p0

SW1.3 Tf F* = ax + b p0

SW1.4 Tf = ax + b F* = cx + d p0

SW2.1 F* p0

SW2.2 F* = ax + b p0

SEQ1.1 Tf Tc F* C* p0

SEQ1.2 Tf = ax + b Tc = cx + d F* C* p0

SEQ1.3 Tf Tc F* = ax + b C* p0

SEQ1.4 Tf Tc F* C* = ax + b p0

SEQ1.5 Tf = ax + b Tc = cx + d F* = ex + f C* = gx + h p0

a The variable ‘x’ is a vector of long-term mean annual temperatures of each site within each vegetation grouping. Parameter definitions are described in more detail in
Appendix A.

Comparison	  of	  Photosynthe.c	  Start	  of	  Spring	  from	  Eddy	  
Covariance	  vs	  MCD12Q2	  (Melaas	  et	  al.,	  AFM,	  2013)	  
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MCD12Q2	  –	  New	  Science	  Results	  

Significant	  informaKon	  in	  phenology	  related	  
to	  crop	  yields.	  	  Upper	  le`	  shows	  study	  region	  
composed	  of	  major	  corn	  (le`)	  and	  soybean	  
(right)	  producKon	  counKes	  in	  US.	  	  Upper	  right	  
shows	  correlaKon	  between	  “phenologically-‐
adjusted”	  vegetaKon	  indices	  and	  yield.	  	  Lower	  
le`	  plots	  yield	  2005	  anomalies	  versus	  
predicted	  anomalies	  from	  MODIS.	  

Bolton	  and	  Friedl,	  AFM	  (2013)	   16	  



MCD12Q2	  -‐	  Summary	  

•  Revised	  funcKonal	  model	  for	  phenology	  
– Reduces	  bias	  in	  product	  

•  Improved	  treatment	  for	  noise,	  missing	  data	  
– Reduces	  noise	  in	  product	  

•  Extensive	  assessment	  and	  validaKon	  
– Feeding	  back	  into	  algorithm	  revisions	  
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